PCM-Career Consultancy
IIT-JEE Education Math, Physics, Chemistry, Career Counselling
Which of the following chops off the audio waveform?
(A) Clipping
(B) Limiting
(C) Compression
(D) Amplification
Sound Engineering Quiz Which of the following chops off the audio waveform? (A) Clipping (B) Limiting (C) Compression (D) Amplification
[.pdf Download]
$\int\limits_0^\infty {\ln \left( {\frac{{{e^x} + 1}}{{{e^x} – 1}}} ight)dx} $ [.pdf Download]
Four large metal plates …
Four large metal plates … Visit the post for more.
[.pdf Download]
A gun is mounted on a gun carriage … [.pdf Download]
Download .pdf
A scientist created a two-dimensional circuit …
A scientist created a two dimensional circuit … [Download .pdf]
[Download .pdf]
Find the equivalent capacitance $C_{AB}$ of the circuit … [Download .pdf]
[Download .pdf]
An alpha-particle and a proton are fired … [Download .pdf]
[Download .pdf]
Solve for x & y$\sqrt x + y = 7$$x + \sqrt y = 11$ [Download .pdf]
[Download .pdf]
The label on the bottle of $H_2O_2$ solution … [Download .pdf]
[Download .pdf]
https://123iitjee.manishverma.site/a_by_aplus1_plus_b_by_bplus1_plus_c_by_cplus1_equals_1/
[Download .pdf]
The two blocks, each of mass M kg, are connected … [Download .pdf]
[Download .pdf]
A block of mass $\sqrt 3$ kg is placed … [Download .pdf]
[Download .pdf]
The string between mass m and 2m is inextensible and light … [Download .pdf]
The number of solution(s) the equation ${x^{{x^2}}} = {x^{4x + 5}}$ has: (A) One solution only (B) Two solutions (C) Three solutions (D) No solution [Download .pdf]
${x^{{x^2}}} = {x^{4x + 5}}$ The number of solution(s) the equation ${x^{{x^2}}} = {x^{4x + 5}}$ has: (A) One solution only (B) Two solutions (C) Three solutions (D) No solution [Download .pdf]…
(A) Triangle is isosceles (B) Triangle is equilateral (C) Triangle is right angled (D) Triangle is scalene We have, $\left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A - 3\cos A}&{4{{\cos }^3}B - 3\cos B}&{4{{\cos }^3}C - 3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$ $ \Rightarrow \left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A}&{4{{\cos }^3}B}&{4{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| - \left| {\begin{array}{*{20}{c}}{3\cos A}&{3\cos B}&{3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$...
In $\Delta ABC$, $\left| {\begin{array}{*{20}{c}}{\cos 3A}&{\cos 3B}&{\cos 3C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} ight| = 0$Select the right option (A) Triangle is isosceles (B) Triangle is equilateral (C) Triangle is right angled (D) Triangle is scalene We have, $\left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A – 3\cos A}&{4{{\cos }^3}…
Substituting 361 in place of x, $f(361 + \sqrt {361} ) = 361 - \sqrt {361} $ $ \Rightarrow f(361 + 19) = 361 - 19$ $ \Rightarrow f(380) = 342$
$f(x + \sqrt x ) = x – \sqrt x $$f(380) = ?$ Substituting 361 in place of x, $f(361 + \sqrt {361} ) = 361 – \sqrt {361} $ $ \Rightarrow f(361 + 19) = 361 – 19$ $ \Rightarrow f(380) = 342$
Two ends of an inextensible string passing over two fixed pulleys with midpoint connected to a block are pulled down with constant speed ve making the block to move up. Then which of the following options is correct? A) $v_m = v_e $ B) $v_m > v_e $ C) $v_m < v_e $ D) Data is insufficient to conclude...
Part B: Two Ends of an Inextensible String …… Two ends of an inextensible string passing over two fixed pulleys with midpoint connected to a block are pulled down with constant speed ve making the block to move up. Then which of the following …
Hydrazine formed from Urea is further oxidised to $N_2$ as shown below: $N{H_2} - \mathop {\mathop C\limits^\parallel }\limits^O - N{H_2} \xrightarrow[\text{Hoffmann Bromamide Degradation}]{\text{NaOBr}} N{H_2} - N{H_2} \longrightarrow {N_2}$ Assuming 1 dL of blood sample contains 30 mg of Urea, calculate the volume of $N_2$ gas obtained at NTP from the sample....
$N{H_2} – CO – N{H_2}\xrightarrow{NaOBr} {N_2}$ Hydrazine formed from Urea is further oxidised to $N_2$ as shown below: $N{H_2} – \mathop {\mathop C\limits^\parallel }\limits^O – N{H_2} \xrightarrow[\text{Hoffmann Bromamide Degradati…
-crown-6 has: A) 18 Carbon & 6 Oxygen atoms B) 6 Carbon & 18 Oxygen atoms C) 12 Carbon & 6 Oxygen atoms D) 6 Carbon & 12 Oxygen atoms Key Crown ether named [T]-crown-O, means T is the total number of atoms in the ring and O is the number of oxygen atoms in the ring. For, -crown-6 there are 6 Oxygen atoms and a total of 18 atoms. So, number of Carbon atoms = 18 - 6 = 12 Hence, option (C).
Nomenclature of Crown Ether [18]-crown-6 has: A) 18 Carbon & 6 Oxygen atoms B) 6 Carbon & 18 Oxygen atoms C) 12 Carbon & 6 Oxygen atoms D) 6 Carbon & 12 Oxygen atoms Key Crown ether named [T]-crown-O, means T …
$frac{1}{{102 times 101 times 100}} + frac{1}{{101 times 100 times 99}} + ......... + frac{1}{{3 times 2 times 1}} = ?$
$\frac{1}{{102 \times 101 \times 100}} + \frac{1}{{101 \times 100 \times 99}} + ……… + \frac{1}{{3 \times 2 \times 1}} = ?$ On rewriting we have the series as, $\frac{1}{{1 \times 2 \times 3}} + \frac{1}{{2 \times 3 \times 4}} + …………….. + \frac{1}{{100 \times 101 \times 102}}$ $ = \sum\limi…
${S_n} = frac{1}{3} + frac{1}{{15}} + frac{1}{{35}} + frac{1}{{63}} + ......... = ?$
${S_n} = \frac{1}{3} + \frac{1}{{15}} + \frac{1}{{35}} + \frac{1}{{63}} + ……… = ?$ ${t_r} = \frac{1}{{4{r^2} – 1}}$ $ = \frac{1}{{(2r – 1)(2r + 1)}} = \frac{1}{2}\left( {\frac{1}{{2r – 1}} – \frac{1}{{2r + 1}}} ight)$ ${S_n} = \sum\limits_{r = 1}^n {\fra…
Water in Vertical Circle
Water in Vertical Circle Consider a small bucket full of water tied to a string whirled around in vertical circle of radius r without water falling down. At the topmost position when the speed of the inverted bucket is v, …
Weighing Machine in Elevator
Weighing Machine in Elevator A man inside an elevator uses weighing machine to weigh himself. With what acceleration should the elevator descend so that the weighing machine reports the weight of the man to be half of its true…
Circular Motion Radius Area
Circular Motion Radius Area Consider a particle in circular motion as shown in the figure. The position vector sweeps equal area in equal time. Select correct option(s). (A) the speed is constant (B) acceleration is constant …
Pulley + Block + Rope
Pulley + Block + Rope A uniform rope of linear mass density $\lambda $ is used to release block m with uniform acceleration a. Find the tension at a point P on the rope at a distance l from the block as shown in the fig…
${sin ^2}{1^circ } + {sin ^2}{2^circ } + ............ + {sin ^2}{180^circ } = ?$
${\sin ^2}{1^\circ } + {\sin ^2}{2^\circ } + ………… + {\sin ^2}{180^\circ } = ?$ The given expression can be written as, $\frac{1}{2}\left[ {(1 – \cos {2^\circ }) + (1 – \cos {4^\circ }) + ……………. + (1 – \cos {{360}^\circ })} igh…
Prove that, ${left( {frac{{1 + sin theta + icos theta }}{{1 + sin theta - icos theta }}} right)^n} =$ $cos nleft( {frac{pi }{2} - theta } right) + isin nleft( {frac{pi }{2} - theta } right)$
Prove that, ${\left( {\frac{{1 + \sin \theta + i\cos \theta }}{{1 + \sin \theta – i\cos \theta }}} ight)^n} =$ $\cos n\left( {\frac{\pi }{2} – \theta } ight) + i\sin n\left( {\frac{\pi }{2} – \theta } ight)$ LHS = ${\left[ {\frac{{(1 + \sin \theta + i\cos \theta )(\sin \theta + i\cos \theta )}}{{\{ 1 + (\sin \theta – i\cos \theta )\} (\sin \theta + i\cos \theta )}}} ight]^n}$ $ = {\left[ {\frac…
Find the least value of ${a^2}{sec ^2}theta + {b^2}{rm{cose}}{{rm{c}}^2}theta $
Find the least value of ${a^2}{\sec ^2}\theta + {b^2}{ m{cose}}{{ m{c}}^2}\theta $ The given expression can be written as, $({a^2}{\sec ^2}\theta – {a^2}) + {a^2} + ({b^2}{ m{cose}}{{ m{c}}^2}\theta – {b^2}) + {b^2}$ $ = {a^2}{\tan ^2}\theta + {b^2}{\cot ^2}\theta +…
https://123iitjee.manishverma.site/mathop-lim-limits_x-to-0-efractan-x-sin-xsin-3x/
$\mathop {\lim }\limits_{x \to 0} {e^{\frac{{\tan x – \sin x}}{{{{\sin }^3}x}}}} = ?$ The given limit = ${e^{\mathop {\lim }\limits_{x \to 0} \frac{{\tan x – \sin x}}{{{{\sin }^3}x}}}}$ $ = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{\cos x}} – 1}}{{{{\sin }^2}…
In acute angled $Delta ABC$ prove that,$sin A + sin B + sin C > cos A + cos B + cos C$
In acute angled $\Delta ABC$ prove that,$sin A + sin B + sin C > cos A + cos B + cos C$ In acute angled triangle, $\cos \frac{A}{2} > \sin \frac{A}{2}$ So, $\sin \frac{A}{2}.\cos \frac{A}{2} > \sin \frac{A}{2}.\sin \frac{A}{2}$ Hence, $2\sin \frac{A}{2}\cos \frac{A}{2} > 2{\s…
Click here to claim your Sponsored Listing.
Videos (show all)
Category
Address
Opening Hours
Monday | 9am - 9pm |
Tuesday | 9am - 9pm |
Wednesday | 9am - 9pm |
Thursday | 9am - 9pm |
Friday | 9am - 9pm |
Saturday | 9am - 9pm |
Sunday | 9am - 9pm |
Plot No 152 Saif Complex Zone 1 MP Nagar
Bhopal, 462001
EduLearning Ventures is a leading Training & Talent Development Corporation, comprising of companies
53 1st Floor C Sector Above Abhishek Book Dipo
Bhopal, 462022
Veta - Experts in spoken english bhopal
Bhopal
Suraj Kumar-Business Consultant And Career Counselor At Bada Business Pvt.Ltd By Team Dr.Vivek Bindra
Bhopal
Bhopal, 462003
IBC : Kalyan Singh Chandel ( CRM Id : BIKS087852 )
Rachna Nagar
Bhopal, 462023
A revolutionary e-learning platform that is also an all-around mentor for the students of our count
18 D Rajved Colony Nayapura Kolar Road
Bhopal, 462042
Kunal Vyas ~ Regulated Canadian Immigration Consultant (RCIC) || Foreign Education Consultant
4/10 Mini Market, First Floor, Ashima Mall, Hoshangabad Road
Bhopal, 462006
Unlock new opportunities with Better English."
Sanjeev Nagar , New Jail Road
Bhopal, 462038
tejas coaching classes offer a online free education plateform we provide spoken english,english gra
131/13 Nagar, Zone/2
Bhopal, 462011
✈️Study Abroad 🆓Free Counselling ✍️Course Guidance 💳Visa Assistance 🎓35,000+ Students Placed Get wings for your study abroad dreams with us