Venture Fuel
Driving Transformation: Technology / Culture / Growth / Strategy / Leadership / Catalyst Effect / Impact
Respect Zone Jordan James Etem
“IT, 빠른 시장 변화 대응 위해 최신 환경 유지해야” - 데이터넷 [데이터넷] 새로운 기술이 넘쳐나고 빠르게 변화하는 환경에 유연하게 대처하기 위해서는 비즈니스 전반의 프로세스가 유연하게 뒷받침돼야 하고, 이를 시스템화할 수 있는 IT 환경의 유연성이 필요하다. 이에 IT...
OracleNasdaqAndreessen HorowitzOracle DatabaseXGBoostWinning StrategiesDell TechnologiesMethods for solving SATMethods for solving parity gamesMethods for solving knapsack problemsOracle DevelopersJordan Etem UnifierAdena FriedmanTeslaRay DalioJordan James Etem Q-Learning, Embedded Java, Strategic Planning, Yearly Roadmaps Embedded Java, Conversational AI, Travel Schedule, Event Planning NVIDIA Embedded Intel
Andreessen HorowitzXGBoostEthereumOracle DatabaseWinning StrategiesAlexa DellNasdaqRay DalioMethods for solving knapsack problemsMethods for solving parity gamesMethods for solving algebraic equationsTeslaWells FargoDell TechnologiesCitiSafra CatzRasha SaidMethods for solving SATMindful Methods for LifeJordan Etem Bipartisan
OracleAndreessen HorowitzJPMorgan Chase & Co.Bill McDermottWinning StrategiesOracle DatabaseEthereumNasdaqElon MuskXGBoostAdena FriedmanBill GatesAlexa DellGoogleJordan Etem BipartisanSafra CatzWells FargoTeslaDell Technologies Citi Rasha SaidRay Dalio
Methods for solving SAT
Methods for solving algebraic equations
Methods for solving knapsack problems
Methods for solving parity games
Mindful Methods for Life
Oracle JPMorgan Chase & Co.Andreessen HorowitzBill McDermottElon MuskNasdaqEthereumOracle DatabaseXGBoostWinning Strategies
OracleJPMorgan Chase & Co.Andreessen HorowitzTeslaDell TechnologiesWells FargoSafra CatzOracle DatabaseElon MuskAdena FriedmanNasdaqWinning StrategiesGoogleXGBoostJordan Etem BipartisanEthereum
JPMorgan Chase & Co.Scenario optimizationOracleWells FargoAndreessen HorowitzBank of AmericaOracle LinuxCombinatorial optimization using quantum algorithmsTranscendental entire functionTeslaJordan James EtemPrinciple of sufficient reasonDell TechnologiesNonlinear systems of equationsJordan Etem UnifierScenario Optimization, Quantum Optimization, Complex Adaptive LeadershipAho-Corasick string matching algorithmOracle DevelopersRay DalioJamie Dimon
Bank of AmericaScenario Optimization, Quantum Optimization, Complex Adaptive LeadershipJPMorgan Chase & Co.List of integrals of hyperbolic functionsAho-Corasick string matching algorithmScenario optimizationWells FargoOracle LinuxAndreessen HorowitzJordan Etem UnifierCombinatorial optimization using quantum algorithmsTranscendental entire functionTeslaBill McDermottRay DalioPrinciple of sufficient reasonDell TechnologiesNonlinear systems of equationsMySQLJordan James Etem
Bank of AmericaMySQLJPMorgan Chase & Co.Bill McDermottList of integrals of hyperbolic functionsAho-Corasick string matching algorithmScenario optimizationOracle LinuxWells FargoJordan Etem UnifierCombinatorial optimization using quantum algorithmsTranscendental entire functionRay DalioTeslaJordan James EtemPrinciple of sufficient reasonDell TechnologiesNonlinear systems of equationsScenario Optimization, Quantum Optimization, Complex Adaptive LeadershipAndreessen Horowitz
(2020) Cognitive Styles in Programming. In: Tatnall A. (eds) Encyclopedia of Education and Information Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-10576-1_300069 ☀️🧠
Our Speech service recently announced 3 new capabilities—at no additional cost! Learn more: https://social.ora.cl/6181zG6TJ
Scenario optimizationNonlinear systems of equationsAho-Corasick string matching algorithmList of integrals of hyperbolic functionsPrinciple of sufficient reasonTranscendental entire functionCombinatorial optimization using quantum algorithmsBank of AmericaOracle LinuxRay DalioScenario Optimization, Quantum Optimization, Complex Adaptive LeadershipJordan Etem UnifierJordan James EtemDell TechnologiesTeslaWells FargoBill McDermottJPMorgan Chase & Co.MySQL
Apoptosis Regulator BAX
☀️🧬🇺🇸🧠🌏🌍🌎🔄
References
Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.
PubMedCrossRefGoogle Scholar
Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 2013;152:519–31.
PubMedCrossRefGoogle Scholar
Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell. 2010;40:481–92.
PubMedPubMedCentralCrossRefGoogle Scholar
Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD. Direct and selective small-molecule activation of proapoptotic BAX. Nat Chem Biol. 2012;8:639–45.
PubMedPubMedCentralCrossRefGoogle Scholar
Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G, Sica GL, Ding C, Zhou J, Magis AT, Chen ZG, Shin DM, Ramalingam SS, Khuri FR, Curran WJ, Deng X. Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell. 2015;27:852–63.
PubMedPubMedCentralCrossRefGoogle Scholar
Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ. Role of Bax and Bak in mitochondrial morphogenesis. Nature. 2006;443:658–62.
PubMedCrossRefGoogle Scholar
Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270:96–9.
PubMedCrossRefGoogle Scholar
Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002;111:331–42.
PubMedPubMedCentralCrossRefGoogle Scholar
Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA. Vaccinia virus anti-apoptotic F1 L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ. 2008;15:1564–71.
PubMedCrossRefGoogle Scholar
Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of Bax protein for cancer therapy. Med Res Rev. 2016a;36:313–41.
PubMedCrossRefGoogle Scholar
Liu Z, Wild C, Ding Y, Ye N, Chen H, Wold EA. BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov Today. 2016b;21:989–96.
PubMedCrossRefGoogle Scholar
Miyash*ta T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–9.
CrossRefGoogle Scholar
Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:609–19.
PubMedCrossRefGoogle Scholar
Robin AY; Krishna Kumar K; Westphal D; Wardak AZ; Thompson GV; Dewson G; Colman PM; Czabotar PE. Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Cell Death Dis. 2015;6:e1809.
PubMedPubMedCentralCrossRefGoogle Scholar
Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300:135–9.
PubMedCrossRefGoogle Scholar
Smoot RL, Blechacz BR, Werneburg NW, Bronk SF, Sinicrope FA, Sirica AE. A Bax-mediated mechanism for obatoclax-induced apoptosis of cholangiocarcinoma cells. Cancer Res. 2010;70:1960–9.
PubMedPubMedCentralCrossRefGoogle Scholar
Stornaiuolo M, La Regina G, Passacantilli S, Grassia G, Coluccia A, La Pietra V. Structure-based lead optimization and biological evaluation of BAX direct activators as novel potential anticancer agents. J Med Chem. 2015;58:2135–48.
PubMedCrossRefGoogle Scholar
Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000;103:645–54.
PubMedCrossRefGoogle Scholar
Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–30.
PubMedPubMedCentralCrossRefGoogle Scholar
Xin M, Li R, Xie M, Park D, Owonikoko TK, Sica GL, Corsino PE, Zhou J, Ding C, White MA, Magis AT, Ramalingam SS, Curran WJ, Khuri FR, Deng X. Small-molecule Bax agonists for cancer therapy. Nat Commun. 2014;5:4935.
PubMedPubMedCentralCrossRefGoogle Scholar
Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science. 2000;290:989–92.
PubMedPubMedCentralCrossRefGoogle Scholar
Zhao G, Zhu Y, Eno CO, Liu Y, Deleeuw L, Burlison JA. Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis. Mol Cell Biol. 2014;34:1198–207.
Solar Light Assisted Synthesis of CeO2 Nanoparticles for Transesterification of Ethylene Carbonate with Methanol to Dimethyl Carbonate
☀️🇺🇸☀️🧬☀️🧠☀️🤝☀️🔄🌏🌎🌍
References
(2020) Global Energy Review 2020. Glob Energy Rev. https://doi.org/10.1787/a60abbf2-en
Christopher K, Dimitrios R (2012) A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640–6651. https://doi.org/10.1039/c2ee01098d
CAS
Article
Google Scholar
Pace R, Krausz E (2012) Solar energy utilisation. RSC Energy Environ Ser 2012:20–38. https://doi.org/10.1049/ep.1980.0305
Article
Google Scholar
Zhao Y, Qiu B, Zhang Z (2018) Concentrated solar light for rapid crystallization of nanomaterials and extreme enhancement of photoelectrochemical performance. Chem Commun 54:2373–2376. https://doi.org/10.1039/c8cc00476e
CAS
Article
Google Scholar
Patil AB, Lanke SR, Deshmukh KM et al (2012) Solar energy assisted palladium nanoparticles synthesis in aqueous medium. Mater Lett 79:1–3. https://doi.org/10.1016/j.matlet.2012.03.069
CAS
Article
Google Scholar
Dhall A, Self W (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 7:1–13. https://doi.org/10.3390/antiox7080097
CAS
Article
Google Scholar
Sutradhar N, Sinhamahapatra A, Pahari S et al (2011) Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene. J Phys Chem C 115:7628–7637. https://doi.org/10.1021/jp200645q
CAS
Article
Google Scholar
Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603
CAS
Article
PubMed
Google Scholar
Singh KRB, Nayak V, Sarkar T, Singh RP (2020) Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 10:27194–27214. https://doi.org/10.1039/d0ra04736h
CAS
Article
Google Scholar
Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. https://doi.org/10.1038/am.2013.88
Article
Google Scholar
Yao H, Wang Y, Luo G (2017) A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor. Ind Eng Chem Res 56:4993–4999. https://doi.org/10.1021/acs.iecr.7b00289
CAS
Article
Google Scholar
Lin M, Fu ZY, Tan HR et al (2012) Hydrothermal synthesis of CeO2 nanocrystals: Ostwald ripening or oriented attachment? Cryst Growth Des 12:3296–3303. https://doi.org/10.1021/cg300421x
CAS
Article
Google Scholar
Kang W, Ozgur DO, Varma A (2018) Solution combustion synthesis of high surface area CeO2 nanopowders for catalytic applications: reaction mechanism and properties. ACS Appl Nano Mater 1:675–685. https://doi.org/10.1021/acsanm.7b00154
CAS
Article
Google Scholar
Wang Z-Q, Zhang M-J, Hu X-B et al (2020) CeO2−x quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. Chem Commun 56:403–406. https://doi.org/10.1039/C9CC07584D
CAS
Article
Google Scholar
Araújo VD, Avansi W, De Carvalho HB et al (2012) CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method: Evolution from nanospheres to nanorods. CrystEngComm 14:1150–1154. https://doi.org/10.1039/c1ce06188g
CAS
Article
Google Scholar
He D, Wan G, Hao H et al (2016) Microwave-assisted rapid synthesis of CeO2 nanoparticles and its desulfurization processes for CH3SH catalytic decomposition. Chem Eng J 289:161–169. https://doi.org/10.1016/j.cej.2015.12.103
CAS
Article
Google Scholar
Sangsefidi FS, Nejati M, Verdi J, Salavati-Niasari M (2017) Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. J Clean Prod 156:741–749. https://doi.org/10.1016/j.jclepro.2017.04.114
CAS
Article
Google Scholar
King’Ondu CK, Iyer A, Njagi EC et al (2011) Light-assisted synthesis of metal oxide heirarchical structures and their catalytic applications. J Am Chem Soc 133:4186–4189. https://doi.org/10.1021/ja109709v
CAS
Article
PubMed
Google Scholar
Han X, Wang W, Zuo K et al (2019) Bio-derived ultrathin membrane for solar driven water purification. Nano Energy 60:567–575. https://doi.org/10.1016/j.nanoen.2019.03.089
CAS
Article
Google Scholar
Yang H, Yin Y (2013) Shaping nanostructures for applications in energy conversion and storage. Chemsuschem 6:1781–1783. https://doi.org/10.1002/cssc.201300996
CAS
Article
PubMed
Google Scholar
Zhang T, Low J, Yu J et al (2020) A blinking mesoporous TiO2−x composed of nanosized anatase with unusually long-lived trapped charge carriers. Angew Chem Int Ed 59:15000–15007. https://doi.org/10.1002/anie.202005143
CAS
Article
Google Scholar
Mittelman AM, Fortner JD, Pennell KD (2015) Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environ Sci Nano 2:683–691. https://doi.org/10.1039/c5en00145e
CAS
Article
Google Scholar
Radoń A, Łukowiec D (2018) Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: structure, formation mechanism and catalytic activity. CrystEngComm 20:7130–7136. https://doi.org/10.1039/c8ce01379a
CAS
Article
Google Scholar
Ahire J, Bhanage BM (2021) Solar energy-controlled shape selective synthesis of zinc oxide nanomaterials and its catalytic application in synthesis of glycerol carbonate. J Solid State Chem 295:121927. https://doi.org/10.1016/j.jssc.2020.121927
CAS
Article
Google Scholar
Zhang G, Shen Z, Liu M et al (2006) Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids. J Phys Chem B 110:25782–25790. https://doi.org/10.1021/jp0648285
CAS
Article
PubMed
Google Scholar
Hezam A, Namratha K, Drmosh QA et al (2020) CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Appl Nano Mater 3:138–148. https://doi.org/10.1021/acsanm.9b01833
CAS
Article
Google Scholar
Esan AO, Adeyemi AD, Ganesan S (2020) A review on the recent application of dimethyl carbonate in sustainable biodiesel production. J Clean Prod 257:120561. https://doi.org/10.1016/j.jclepro.2020.120561
CAS
Article
Google Scholar
Kumar P, Srivastava VC, Štangar UL et al (2019) Recent progress in dimethyl carbonate synthesis using different feedstock and techniques in the presence of heterogeneous catalysts. Catal Rev Sci Eng. https://doi.org/10.1080/01614940.2019.1696609
Article
Google Scholar
Tundo P, He LN, Lokteva E, Mota C (2016) Chemistry beyond chlorine. Chem Beyond Chlor. https://doi.org/10.1007/978-3-319-30073-3
Article
Google Scholar
Kim DW, Lim DO, Cho DH et al (2011) Production of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquids on MCM-41. Catal Today 164:556–560. https://doi.org/10.1016/j.cattod.2010.11.010
CAS
Article
Google Scholar
Xu J, Wu HT, Ma CM et al (2013) Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification. Appl Catal A Gen 464–465:357–363. https://doi.org/10.1016/j.apcata.2013.06.016
CAS
Article
Google Scholar
Wang JQ, Sun J, Cheng WG et al (2012) Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catal Sci Technol 2:600–605. https://doi.org/10.1039/c1cy00342a
CAS
Article
Google Scholar
Du GF, Guo H, Wang Y et al (2015) N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol. J Saudi Chem Soc 19:112–115. https://doi.org/10.1016/j.jscs.2014.03.003
Article
Google Scholar
Yang ZZ, He LN, Dou XY, Chanfreau S (2010) Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Lett 51:2931–2934. https://doi.org/10.1016/j.tetlet.2010.03.114
CAS
Article
Google Scholar
Nyoka M, Choonara YE, Kumar P et al (2020) Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomaterials. https://doi.org/10.3390/nano10020242
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Wong H, Yu D et al (2014) X-ray photoelectron spectroscopy study of high-k CeO2/La2O3 stacked dielectrics. AIP Adv. https://doi.org/10.1063/1.4902017
Article
Google Scholar
Bêche E, Charvin P, Perarnau D et al (2008) Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (Ce xTiyOz). Surf Interface A**l 40:264–267. https://doi.org/10.1002/sia.2686
CAS
Article
Google Scholar
López JM, Gilbank AL, García T et al (2015) The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B Environ 174–175:403–412. https://doi.org/10.1016/j.apcatb.2015.03.017
CAS
Article
Google Scholar
Wu TS, Syu LY, Lin CN et al (2019) Enhancement of catalytic activity by UV-light irradiation in CeO2 nanocrystals. Sci Rep 9:2–8. https://doi.org/10.1038/s41598-019-44543-2
CAS
Article
Google Scholar
Chen Z, Kronawitter CX, Yang X et al (2017) The promoting effect of tetravalent cerium on the oxygen evolution activity of copper oxide catalysts. Phys Chem Chem Phys 19:31545–31552. https://doi.org/10.1039/C7CP05248K
CAS
Article
PubMed
Google Scholar
Kullgren J, Hermansson K, Broqvist P (2013) Supercharged low-temperature oxygen storage capacity of ceria at the nanoscale. J Phys Chem Lett 4:604–608. https://doi.org/10.1021/jz3020524
CAS
Article
PubMed
Google Scholar
Xu J, Harmer J, Li G et al (2010) Size dependent oxygen buffering capacity of ceria nanocrystals. Chem Commun 46:1887–1889. https://doi.org/10.1039/b923780a
CAS
Article
Google Scholar
Pettinger NW, Empey JM, Fröbel S, Kohler B (2020) Photoreductive dissolution of cerium oxide nanoparticles and their size-dependent absorption properties. Phys Chem Chem Phys 22:5756–5764. https://doi.org/10.1039/c9cp06579b
CAS
Article
PubMed
Google Scholar
Wu X, Neil CW, Kim D et al (2018) Co-effects of UV/H2O2 and natural organic matter on the surface chemistry of cerium oxide nanoparticles. Environ Sci Nano 5:2382–2393. https://doi.org/10.1039/c8en00435h
CAS
Article
Google Scholar
Jorge AB, Fraxedas J, Cantarero A et al (2008) Nitrogen doping of ceria. Chem Mater 20:1682–1684. https://doi.org/10.1021/cm7028678
CAS
Article
Google Scholar
Wandelt K (2018) Encyclopedia of interfacial chemistry surface. Oliver Walter, Exeter
Google Scholar
Lian J, Liu P, Jin C et al (2019) Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Microchim Acta 2:1–10
Google Scholar
Spanier JE, Robinson RD, Zhang F et al (2001) Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys Rev B 64:245407. https://doi.org/10.1103/PhysRevB.64.245407
CAS
Article
Google Scholar
Weber WH, Hass KC, McBride JR (1993) Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Phys Rev B 48:178–185. https://doi.org/10.1103/PhysRevB.48.178
CAS
Article
Google Scholar
Taniguchi T, Watanabe T, Sugiyama N et al (2009) Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 113:19789–19793. https://doi.org/10.1021/jp9049457
CAS
Article
Google Scholar
Nakajima A, Yoshihara A, Ishigame M (1994) Defect-induced Raman spectra in doped CeO2. Phys Rev B 50:13297–13307. https://doi.org/10.1103/PhysRevB.50.13297
CAS
Article
Google Scholar
Zheng H, Hong Y, Xu J et al (2018) Transesterification of ethylene carbonate to dimethyl carbonate catalyzed by CeO2 materials with various morphologies. Catal Commun 106:6–10. https://doi.org/10.1016/j.catcom.2017.12.007
CAS
Article
Google Scholar
Guczi L, Erdôhelyi A (2012) Catalysis for alternative energy generation. Springer, New York, NY
Book
Google Scholar
Xu J, Long K-Z, Wu F et al (2014) Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate over a new mesoporous ceria catalyst. Appl Catal A Gen 484:1–7. https://doi.org/10.1016/j.apcata.2014.07.009
CAS
Article
Google Scholar
Kumar P, Kaur R, Verma S et al (2018) The preparation and efficacy of SrO/CeO2 catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate. Fuel 220:706–716. https://doi.org/10.1016/j.fuel.2018.01.137
CAS
Article
Google Scholar
Graciani J, Mudiyanselage K, Xu F et al (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550. https://doi.org/10.1126/science.1253057
CAS
Article
PubMed
Google Scholar
Wang F, He S, Chen H et al (2016) Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J Am Chem Soc 138:6298–6305. https://doi.org/10.1021/jacs.6b02762
CAS
Article
PubMed
Google Scholar
Wei L, Grénman H, Haije W et al (2021) Sub-nanometer ceria-promoted Ni 13X zeolite catalyst for CO2 methanation. Appl Catal A Gen 612:118012. https://doi.org/10.1016/j.apcata.2021.118012
Application of CRISPR-Based Technology in Plant Gene Editing and Agricultural Engineering
🧬🧬🧬☀️🧬🧬🧬🌍🌎🌏🧬🧬🧬🧠🧡🤝
References
Bortesi, L., and R. Fischer. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33: 41–52.
CAS
PubMed
CrossRef
Google Scholar
Zhang, Y., et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7: 12617.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lu, Y., and J.K. Zhu. 2016. Molecular Plant. https://doi.org/10.1016/j.molp.2016.11.013.
CrossRef
PubMed
Google Scholar
Li, J., Y. Sun, J. Du, Y. Zhao, and L. Xia. 2016. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Molecular Plant. https://doi.org/10.1016/j.molp.2016.12.001.
CrossRef
PubMed
Google Scholar
Ren, B. et al. 2016. Sci. China Life Sci. http://engine.scichina.com/doi/10.1007/s11427-016-0406-x.
Shan, Q., et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31: 686–688.
CAS
PubMed
CrossRef
Google Scholar
Wang, Y., et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.
CAS
PubMed
CrossRef
Google Scholar
Liang, Z., K. Zhang, K. Chen, and C.J. Gao. 2014. Genetics Genomics 41: 63–68.
CAS
CrossRef
Google Scholar
Xing, H.L., et al. 2014. BMC Plant Biology 14: 327.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Kurowska, M., et al. 2011. Journal of Applied Genetics 52: 371–390.
PubMed
PubMed Central
CrossRef
Google Scholar
Tang, X., et al. 2016. Molecular Plant 9: 1088–1091.
CAS
PubMed
CrossRef
Google Scholar
Murray, M.G., and W.F. Thompson. 1980. Nucleic Acids Research 8: 4321–4325.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Magoc, T., and S.L. Salzberg. 2011. Bioinformatics 27: 2957–2963.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zetsche, B., et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759–771.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mikami, M., S. Toki, and M. Endo. 2015. Plant Molecular Biology 88: 561–572.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yu, Q., and S.B. Powles. 2014. Pest Management Science 70: 1340–1350.
CAS
PubMed
CrossRef
Google Scholar
Nishida, K., et al. 2016. Science 102: 553–563.
Google Scholar
Stemmer, M., T. Thumberger, M. Del Sol Keyer, J. Wittbrodt, and J.L. Mateo. 2015. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10: e0124633–e11.
Google Scholar
Hua, K., X. Tao, F. Yuan, D. Wang, and J.K. Zhu. 2018. Precise A.T to G.C base editing in the rice genome. Molecular Plant 11:627–30.
Google Scholar
Shimatani, Z., S. Kashojiya, M. Takayama, R. Terada, T. Arazoe, H. Ishii, H. Teramura, T. Yamamoto, H. Komatsu, K. Miura, et al. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology 35: 441–443.
CAS
PubMed
CrossRef
Google Scholar
Yan, F., Y. Kuang, B. Ren, J. Wang, D. Zhang, H. Lin, B. Yang, X. Zhou, and H. Zhou. 2018. Highly efficient A.T to G.C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Molecular Plant 11:631–634.
Google Scholar
Zong, Y., et al. 2017. Precise base editing in rice, wheat and maize with a Cas9–cytidine deaminase fusion. Nature Biotechnology 35: 438–440.
CAS
PubMed
CrossRef
Google Scholar
Hess, G.T., J. Tycko, D. Yao, and M.C. Bassik. 2017. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Molecular Cell 68: 26–43.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yang, B., X. Li, L. Lei, and J. Chen. 2017. APOBEC: From mutator to editor. Journal of Genetics and Genomics 44: 423–437.
PubMed
CrossRef
Google Scholar
Komor, A.C., Y.B. Kim, M.S. Packer, J.A. Zuris, and D.R. Liu. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533: 420–424.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Komor, A. C. et al. 2017. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances 3: eaao4774.
Google Scholar
Nishida, K., T. Arazoe, N. Yachie, S. Banno, M. Kakimoto, M. Tabata, M. Mochizuki, A. Miyabe, M. Araki, K.Y. Hara, et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353: 1248.
CAS
CrossRef
Google Scholar
Li, X., Y. Wang, Y. Liu, B. Yang, X. Wang, J. Wei, Z. Lu, Y. Zhang, J. Wu, X. Huang, et al. 2018. Base editing with a Cpf1–cytidine deaminase fusion. Nature Biotechnology 36: 324–327.
CAS
PubMed
CrossRef
Google Scholar
Zalatan, J.G., et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160: 339–350.
CAS
PubMed
CrossRef
Google Scholar
Ma, H., et al. 2016. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology 34: 528–530.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Barton, M.K. 2010. Twenty years on: The inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology 341: 95–113.
CAS
PubMed
CrossRef
Google Scholar
Gallois, J.-L., C. Woodward, G.V. Reddy, and R. Sablowski. 2002. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129: 3207–3217.
CAS
PubMed
CrossRef
Google Scholar
Ckurshumova, W., T. Smirnova, D. Marcos, Y. Zayed, and T. Berleth. 2014. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation. New Phytologist 204: 556–566.
CAS
CrossRef
Google Scholar
Lowe, K., et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28: 1998–2015.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lowe, K. et al. 2018. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. Vitro Cellelluar Development Biology, Plant 54: 240–252.
Google Scholar
Nelson-Vasilchik, K., J. Hague, M. Mookkan, Z.J. Zhang, and A. Kausch. 2018. Transformation of recalcitrant Sorghum varieties facilitated by Baby Boom and Wuschel2. Curr. Protoc. Plant Biology 3: e20076.
Google Scholar
Phillips, R.L., S.M. Kaeppler, and P. Olhoft. 1994. Genetic instability of plant tissue cultures: Breakdown of normal controls. Proceedings of the National academy of Sciences of the United States of America 91: 5222–5226.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang, D. et al. 2014. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PloS ONE 9: e96879.
Google Scholar
Hamada, H., et al. 2017. An in planta biolistic method for stable wheat transformation. Science and Reports 7: 11443.
CrossRef
CAS
Google Scholar
Anzalone, A.V., et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576: 149–157.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lippman, Z.B. et al. 2008. The making of a compound inflorescence in tomato and related nightshades. PLoS Biology. 6: e288.
Google Scholar
Patel, R.K., and Jain, M. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 7, e30619.
Google Scholar
Li, R., et al. 2009. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 25: 1966–1967.
CAS
PubMed
CrossRef
Google Scholar
Laurie, D.A., and M.D. Bennett. 1988. The production of haploid wheat plants from wheat × maize crosses. Theoretical and Applied Genetics 76: 393–397.
CAS
PubMed
CrossRef
Google Scholar
Coe, E.H. 1959. A line of maize with high haploid frequency. The American Naturalist 93: 381–382.
CrossRef
Google Scholar
Kasha, K.J., and K.N. Kao. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225: 874–876.
Google Scholar
Burke, L.G. et al. 1979. Maternal haploids of Nicotiana tabacum L. from seed. Science 206: 585.
Google Scholar
Ravi, M., and S.W.L. Chan. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464: 615–618.
CAS
PubMed
CrossRef
Google Scholar
Kelliher, T., et al. 2017. Matrilineal, a s***m-specific phospholipase, triggers maize haploid induction. Nature 542: 105–109.
CAS
PubMed
CrossRef
Google Scholar
Whipple, C.J., et al. 2011. GRASSY TILLERS1 promotes apical dominance in maize and responds to shade signals in the grasses. Proceedings of the National academy of Sciences of the United States of America 108: E506–E512.
CAS
PubMed
PubMed Central
Google Scholar
Li, Q., et al. 2010. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2-associated with kernel size and weight. BMC Plant Biology 10: 143.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Borg, M., et al. 2011. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for s***m cell differentiation in Arabidopsis. The Plant Cell 23: 534–549.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sprunck, S., et al. 2012. Egg cell-secreted EC1 triggers s***m cell activation during double fertilization. Science 338: 1093–1097.
CAS
PubMed
CrossRef
Google Scholar
White, F.F., N. Potnis, J.B. Jones, and R. Koebnik. 2009. The type III effectors of Xanthomonas. Molecular Plant Pathology 10: 749–766.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bezrutczyk, M., et al. 2018. Sugar flux and signaling in plant-microbe interactions. The Plant Journal 93: 675–685.
CAS
PubMed
CrossRef
Google Scholar
Zhou, J., et al. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal 82: 632–643.
CAS
PubMed
CrossRef
Google Scholar
Liu, Q., et al. 2011. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant, Cell and Environment 34: 1958–1969.
CAS
PubMed
CrossRef
Google Scholar
Streubel, J. et al. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytology 200: 808–819.
Google Scholar
Yu, Y. et al. 2011. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Molecular Plant Microbe Interact 24: 1102–1113.
Google Scholar
Yang, B., A. Sugio, and F.F. White. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National academy of Sciences of the United States of America 103: 10503–10508.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Benke, K., and B. Tomkins. 2017. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustainability Science Practice Policy 13: 13–26.
CrossRef
Google Scholar
Pearson, L.J., L. Pearson, and C.J. Pearson. 2010. Sustainable urban agriculture: Stocktake and opportunities. International Journal of Agricultural Sustainability 8: 7–19.
CrossRef
Google Scholar
Martellozzo, F. et al. 2014. Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand. Environment Research Letter 9: 064025.
Google Scholar
Banerjee, C., and L. Adenaeuer. 2014. Up, up and away! The economics of vertical farming. Journal of Agriculture Studies 2: 40–60.
CrossRef
Google Scholar
Touliatos, D., I.C. Dodd, and M. McAinsh. 2016. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Security 5: 184–191.
PubMed
CrossRef
Google Scholar
Soyk, S., et al. 2017. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics 49: 162–168.
CAS
PubMed
CrossRef
Google Scholar
Yamamoto, Y., and S.A. Gerbi. 2018. Making ends meet: Targeted integration of DNA fragments by genome editing. Chromosoma 127: 405–420.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sun, Y., J. Li, and L. Xia. 2016. Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Frontiers in Plant Science 7: 1928.
PubMed
PubMed Central
Google Scholar
Schindele, A., A. Dorn, and H. Puchta. 2019. CRISPR/Cas brings plant biology and breeding into the fast lane. Current Opinion in Biotechnology 61: 7–14.
PubMed
CrossRef
CAS
Google Scholar
Li, Z., et al. 2015. Cas9-guide RNA directed genome editing in soybean. Plant Physiology 169: 960–970.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Svitashev, S., et al. 2015. Plant Physiology 169: 931–945.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Svitashev, S., C. Schwartz, B. Lenderts, J.K. Young, and A. Mark Cigan. 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications 7: 13274.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Begemann, M.B., et al. 2017. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Science and Reports 7: 11606.
CrossRef
CAS
Google Scholar
Wang, M.G., et al. 2017. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Molecular Plant 10: 1007–1010.
CAS
PubMed
CrossRef
Google Scholar
Čermák, T., N.J. Baltes, R. Čegan, Y. Zhang, and D.F. Voytas. 2015. Genome Biology 16: 232.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Lee, K., et al. 2019. CRISPR/Cas9-mediated targeted T-DNA integration in rice. Plant Molecular Biology 99: 317–328.
CAS
PubMed
CrossRef
Google Scholar
Shi, J., et al. 2017. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15: 207–216.
CAS
PubMed
CrossRef
Google Scholar
Dahan-Meir, T., et al. 2018. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. The Plant Journal 95: 5–16.
CAS
PubMed
CrossRef
Google Scholar
Miki, D., W. Zhang, W. Zeng, Z. Feng, and J.K. Zhu. 2018. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications 9: 1967.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Li, J., et al. 2016. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants 2: 16139.
CAS
PubMed
CrossRef
Google Scholar
Zastrow-Hayes, G., et al. 2015. Plant Genome 8: 1–15.