Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net

Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net

Contact information, map and directions, contact form, opening hours, services, ratings, photos, videos and announcements from Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net, Science, Technology & Engineering, .

Photos from Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net's post 24/08/2022

Oracle Google Methods for solving algebraic equations Methods for solving knapsack problems Methods for solving SAT Methods for solving the Duffing equation Methods for solving Markov decision processes Methods for numerically solving systems of polynomial equations Solving nonlinear systems of equations using Newton's method Connection (vector bundle) Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net Nasdaq New York Stock Exchange XGBoost Jordan James Etem Dell Oracle Developers Oracle Database Oracle Cloud ERP Oracle Analytics Oracle Cloud

Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system - Nature Reviews Drug Discovery 14/05/2022

References
Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120. https://doi.org/10.1152/physrev.00015.2008.
CrossRefPubMedPubMedCentralGoogle Scholar
Alves LA, da Silva JHM, Ferreira DNM, Fidalgo-Neto AA, Teixeira PCN, de Souza CAM, et al. Structural and molecular modeling features of P2X receptors. Int J Mol Sci. 2014;15:4531–49. https://doi.org/10.3390/ijms15034531.
CrossRefPubMedPubMedCentralGoogle Scholar
Chandler DJ, Waterhouse BD, Gao W-J. New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front Neural Circuits. 2014;8:53. https://doi.org/10.3389/fncir.2014.00053.
CrossRefPubMedPubMedCentralGoogle Scholar
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. Neuron. 1998;21:959–80. https://doi.org/10.1016/S0896-6273(00)80616-9.
CrossRefPubMedPubMedCentralGoogle Scholar
Chatzidaki A, Millar NS. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2015;97:408–17. https://doi.org/10.1016/j.bcp.2015.07.028.
CrossRefPubMedPubMedCentralGoogle Scholar
Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214.
CrossRefPubMedPubMedCentralGoogle Scholar
Fasoli F, Gotti C. Structure of neuronal nicotinic receptors. Curr Top Behav Neurosci. 2015;23:1–17. https://doi.org/10.1007/978-3-319-13665-3_1.
CrossRefPubMedPubMedCentralGoogle Scholar
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74:363–96. https://doi.org/10.1016/j.pneurobio.2004.09.006.
CrossRefPubMedPubMedCentralGoogle Scholar
Hopur52009. Nicotinic_receptors.Png. Accessed on 27 July 2016, cited 27 July 2015. Available from: http://upload.wikimedia.org/wikipedia/commons/f/f1/Nicotinic_receptors.png
Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137:22–54. https://doi.org/10.1016/j.pharmthera.2012.08.012.
CrossRefPubMedPubMedCentralGoogle Scholar
Martindale R, Lester RAJ. On the discovery of the nicotinic acetylcholine receptor channel. In: Lester AJR, editor. Nicotinic receptors. New York: Springer; 2014. p. 1–16.
Google Scholar
Nakayama H, Shimoke K, Isosaki M, Satoh H, Yoshizumi M, Ikeuchi T. Subtypes of neuronal nicotinic acetylcholine receptors involved in ni****ne-induced phosphorylation of extracellular signal-regulated protein kinase in PC12h cells. Neurosci Lett. 2006;392:101–4. https://doi.org/10.1016/j.neulet.2005.09.003.
CrossRefPubMedPubMedCentralGoogle Scholar
Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(Suppl 3):S548–59. https://doi.org/10.1002/mds.22062.
CrossRefPubMedPubMedCentralGoogle Scholar
Picciotto MR, Brunzell DH, Caldarone BJ. Effect of ni****ne and nicotinic receptors on anxiety and depression. Neuroreport. 2002;13:1097–106.
PubMedCrossRefGoogle Scholar
Pomerleau OF. Ni****ne and the central nervous system: biobehavioral effects of cigarette smoking. Am J Med. 1992;93:2S–7S.
PubMedCrossRefGoogle Scholar
Rahman S. Nicotinic receptors as therapeutic targets for drug addictive disorders. CNS Neurol Disord Drug Targets. 2013;12:633–40.
PubMedCrossRefGoogle Scholar
Sarter M, Nelson CL, Bruno JP. Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull. 2005;31:117–38. https://doi.org/10.1093/schbul/sbi006.
CrossRefPubMedPubMedCentralGoogle Scholar
Schaaf CP. Nicotinic acetylcholine receptors in human genetic disease. Genet Med. 2014;16:649–56. https://doi.org/10.1038/gim.2014.9.
CrossRefPubMedPubMedCentralGoogle Scholar
Servier. Receptors and channels. Accessed on 27 July 2016, cited 27 July 2016. Available from: http://www.servier.com/slidekit/?item=5
Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov. 2009;8:733–50. https://doi.org/10.1038/nrd2927.

Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system - Nature Reviews Drug Discovery The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the activity of which modulates many neurotransmitter systems. They are therefore therapeutic targets for the treatment of several central nervous system disorders. In this article, Taly and colleagues present recent advan...

Serum Response Factor and cAMP Response Element Binding Protein Are Both Required for Co***ne Induction of ΔFosB 13/05/2022

References
Cates HM, Thibault M, Pfau M, Heller E, Eagle A, Gajewski P, et al. Threonine 149 phosphorylation enhances ΔFosB transcriptional activity to control psychomotor responses to co***ne. J Neurosci. 2014;34:11461–9. https://doi.org/10.1523/JNEUROSCI.1611-14.2014.
CrossRefPubMedPubMedCentralGoogle Scholar
Dietz DM, Kennedy PJ, Sun H, Maze I, Gancarz AM, Vialou V, et al. ΔFosB induction in prefrontal cortex by antipsychotic drugs is associated with negative behavioral outcomes. Neuropsychopharmacology. 2014;39:538–44. https://doi.org/10.1038/npp.2013.255.
PubMedPubMedCentralCrossRefGoogle Scholar
Feyder M, Södersten E, Santini E, Vialou V, LaPlant Q, Watts EL, Spigolon G, et al. A role for mitogen- and stress-activated kinase 1 in L-DOPA-induced dyskinesia and ΔFosB expression. Biol Psychiatry. 2016;79:362–71. https://doi.org/10.1016/j.biopsych.2014.07.019.
CrossRefPubMedCentralPubMedGoogle Scholar
Grueter BA, Robison AJ, Neve RL, Nestler EJ, Malenka RC. ΔFosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci U S A. 2013;110:1923–8. https://doi.org/10.1073/pnas.1221742110.
CrossRefPubMedPubMedCentralGoogle Scholar
Heller EA, Cates HM, Peña CJ, Sun H, Shao N, Feng J, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014;17:1720–7. https://doi.org/10.1038/nn.3871.
CrossRefPubMedPubMedCentralGoogle Scholar
Hiroi N, Brown J, Haile C, Ye H, Greenberg ME, Nestler EJ. FosB mutant mice: Loss of chronic co***ne induction of Fos-related proteins and heightened sensitivity to co***ne's psychomotor and rewarding effects. Proc Natl Acad Sci USA. 1997;94:10397–402.
PubMedPubMedCentralCrossRefGoogle Scholar
Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic co***ne and other chronic treatments. Neuron. 1994;13:1235–44.
PubMedPubMedCentralCrossRefGoogle Scholar
Jorissen H, Ulery P, Henry L, Gourneni S, Nestler EJ, Rudenko G. Dimerization and DNA-binding properties of the transcription factor deltaFosB. Biochemistry. 2007;46:8360–72. https://doi.org/10.1021/bi700494v.
CrossRefPubMedGoogle Scholar
Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, et al. Chromatin remodeling is a key mechanism underlying co***ne-induced plasticity in striatum. Neuron. 2005;48:303–14. https://doi.org/10.1016/j.neuron.2005.09.023.
CrossRefPubMedGoogle Scholar
Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, et al. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33:18381–95. https://doi.org/10.1523/JNEUROSCI.1875-13.2013.
CrossRefPubMedPubMedCentralGoogle Scholar
Mandelzys A, Gruda MA, Bravo R, Morgan JI. Absence of a persistently elevated 37 kDa fos-related antigen and AP-1-like DNA-binding activity in the brains of kainic acid-treated fosB null mice. J Neurosci. 1997;17:5407–15.
PubMedPubMedCentralCrossRefGoogle Scholar
Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in co***ne-induced plasticity. Science. 2010;327:213–6. https://doi.org/10.1126/science.1179438.
PubMedPubMedCentralCrossRefGoogle Scholar
McClung CA, Nestler EJ. Regulation of gene expression and co***ne reward by CREB and DeltaFosB. Nat Neurosci. 2003;6:1208–15. https://doi.org/10.1038/nn1143.
CrossRefPubMedGoogle Scholar
Muschamp JW, Nemeth CL, Robison AJ, Nestler EJ, Carlezon Jr WA. ΔFosB enhances the rewarding effects of co***ne while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488. Biol Psychiatry. 2012;71:44–50. https://doi.org/10.1016/j.biopsych.2011.08.011.
CrossRefPubMedCentralPubMedGoogle Scholar
Nestler EJ. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:3245–55. https://doi.org/10.1098/rstb.2008.0067.
CrossRefGoogle Scholar
Nestler EJ. ΔFosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol. 2015;753:66–72. https://doi.org/10.1016/j.ejphar.2014.
CrossRefPubMedCentralPubMedGoogle Scholar
Ohnishi YN, Ohnishi YH, Vialou V, Mouzon E, LaPlant Q, Nishi A, et al. Functional role of the N-terminal domain of ΔFosB in response to stress and drugs of abuse. Neuroscience. 2015;284:165–70. https://doi.org/10.1016/j.ejphar.2014.
CrossRefPubMedCentralPubMedGoogle Scholar
Renthal W, Kumar A, Xiao G, Wilkinson M, Covington 3rd HE, Maze I, et al. Genome-wide analysis of chromatin regulation by co***ne reveals a role for sirtuins. Neuron. 2009;62:335–48. https://doi.org/10.1016/j.neuron.2009.03.026.
CrossRefPubMedPubMedCentralGoogle Scholar
Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, et al. Behavioral and structural responses to chronic co***ne require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci. 2013;33:4295–307. https://doi.org/10.1523/JNEUROSCI.5192-12.2013.
CrossRefPubMedPubMedCentralGoogle Scholar
Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med. 2000;6:985–90. https://doi.org/10.1038/79683.
CrossRefPubMedCentralPubMedGoogle Scholar
Vialou V, Robison AJ, Laplant QC, Covington 3rd HE, Dietz DM, Ohnishi YN, et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci. 2010;13:745–52. https://doi.org/10.1038/nn.2551.
CrossRefPubMedPubMedCentralGoogle Scholar
Vialou V, Feng J, Robison AJ, Ku SM, Ferguson D, Scobie KN, et al. Serum response factor and cAMP response element binding protein are both required for co***ne induction of ΔFosB. J Neurosci. 2012;32:7577–84. https://doi.org/10.1523/JNEUROSCI.1381-12.2012.

Serum Response Factor and cAMP Response Element Binding Protein Are Both Required for Co***ne Induction of ΔFosB The molecular mechanism underlying induction by co***ne of ΔFosB, a transcription factor important for addiction, remains unknown. Here, we demonstrate a necessary role for two transcription factors, cAMP response element binding protein (CREB) and serum response factor (SRF), in mediating this ind...

Photos from Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net's post 13/04/2022

Scenario Optimization, Quantum Optimization, Complex Adaptive LeadershipDriving Innovation WorldwideTranscendental entire functionCombinatorial optimization using quantum algorithmsDeep Belief NetworksOracle DatabaseNasdaqLinkedInEnd-to-end reinforcement learningEmpowering LeadershipSafra CatzReward functionBusiness Growth CatalystOracle AdvertisingJordan James EtemLarry EllisonUnstructured dataAMDWinning StrategiesAdena Friedman

Photos from Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net's post 08/04/2022

Combinatorial optimization using quantum algorithmsLinkedInNasdaqOracle DatabaseDeep Belief NetworksAMDTranscendental entire functionDriving Innovation WorldwideEnd-to-end reinforcement learningScenario Optimization, Quantum Optimization, Complex Adaptive Leadership

Photos from Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net's post 14/03/2022

Transcendental entire function
Safra Catz
Deep Belief Networks
Combinatorial optimization using quantum algorithms
Winning Strategies
Oracle Advertising
Empowering Leadership
Driving Innovation Worldwide
Reward function
End-to-end reinforcement learning
Larry Ellison
Business Growth Catalyst
Unstructured data
Scenario Optimization, Quantum Optimization, Complex Adaptive Leadership
LinkedIn
Oracle Database
Jordan James Etem
Nasdaq Adena Friedman

Photos from Research Papers, Unsupervised Machine Learning, Google Scholar, Neural Net's post 27/01/2022

Scenario Optimization, Quantum Optimization, Complex Adaptive Leadership
Combinatorial optimization using quantum algorithms
Java Programming
Oracle Database
Safra Catz
Larry Page & Sergey Brin
Deep Belief Networks
Winning Strategies
Oracle Advertising
Empowering Leadership
Jordan James Etem
Driving Innovation Worldwide
Larry Ellison
Unstructured data
Business Growth Catalyst
Conversational Artificial Intelligence, Supply Chain Matching Algorithms
PythonRCC++JavaJavaScriptMachine learningDeep learningRecommendation systemsComputer visionData visualizationData miningNLP
Moral expectation
Embedded Systems
Computer engineering

Oracle Accenture Intel Transcendental entire function End-to-end reinforcement learning
Sanna Marin

25/12/2021

Smart Cities / Regions / For Development / Community Building / Learning / Network Mobilization / Innovation / Market Integration

1. Austin, Texas Collaboration
2. Los Angeles, California Insight
3. San Diego, California Team Basics
4. Denver, Colorado Value Propositions
5. Houston, Texas Software Design
6. Chicago, Illinois Community Building
7. New York, New York SuperRadiance
8. London, United Kingdom Joy
9. Bangkok, Thailand Honor
10. Seoul Korea Good Faith
11. Italy / Brasil / Hong Kong Integrity
12. Berlin, Germany Mindfulness
13. Stockholm, Sweden ComplexSystems
14. Detroit, Michigan Multi Objective Optimization
15. Miami, Florida Family Science
16. Tampa, Florida Quantum Chemistry
17. Charlotte, NC Decision Support
18. Richmond, Virginia Sustainability
19. Boston, Massachusetts Learning and Improvement
20. Phoenix, AZ Intelligent Systems
21. Seattle, WA Smart City as a Service
22. Portland, OR Rational Unified Process
23. Vancouver, BC Quantum Optimization
24. Toronto, Ontario Health
25. Madrid, Spain Quality
26. Mumbai, India Apple Development
27. Kansas City, MO Microsoft Development
28. St. Petersberg, FL Edge Computing
29. Nashville, Tennesse SaaS
30. Netherlands, Israel, Australia
31. Atlanta, Georgia, Oracle
32. Tokyo, Japan Tesla Elon Musk
33. Paris, France Embedded Systems
34. Cape Town, South Africa Spiritual and Economic Linkages
35. Dubai, UAE Cognitive Computing
36. Minneapolis, MN Rural and Urban Linkages

Feedback and Engagement:
Integrating Market and State with People and Community, .

Chu, J.-H., Feng, K.-T., & Chang, T.-S. (2014). Energy-efficient cell selection and resource allocation in LTE-A heterogeneous networks. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), 2014: IEEE, pp. 976–980.��
�Guvenc, I. (2011). Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination. IEEE Communications Letters, 15(10), 1084–1087.��
* Okino, K., Nakayama, T., Yamazaki, C., Sato, H., & Kusano, Y. (2011). Pico cell range expansion with interference mitigation toward LTE-Advanced heterogeneous networks. In 2011 IEEE international conference on communications workshops (ICC), 2011: IEEE, pp. 1–5.��
* Tefft, J. R., & Kirsch, N. J. (2013). A proximity-based Q-learning reward function for femtocell networks. In 2013 IEEE 78th vehicular technology conference (VTC Fall), 2013: IEEE, pp. 1–5.� �
* Saad, H., Mohamed, A., & ElBatt, T. (2012). Distributed cooperative Q-learning for power allocation in cognitive femtocell networks. In 2012 IEEE vehicular technology conference (VTC Fall), 2012: IEEE, pp. 1–5.�
* Wen, B., Gao, Z., Huang, L., Tang, Y., & Cai, H. (2014). A Q-learning-based downlink resource scheduling method for capacity optimization in LTE femtocells. In 2014 9th international conference on computer science & education, 2014: IEEE, pp. 625–628.��
* Galindo-Serrano, A., & Giupponi, L. (2010). Distributed Q-learning for interference control in OFDMA-based femtocell networks. In 2010 IEEE 71st vehicular technology conference, 2010: IEEE, pp. 1–5.��
* Guo, D., Tang, L., Zhang, X., & Liang, Y.-C. (2020). Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(11), 13124–13138.��
* Alnwaimi, G., Vahid, S., & Moessner, K. (2014). Dynamic heterogeneous learning games for opportunistic access in LTE-based macro/femtocell deployments. IEEE Transactions on Wireless Communications, 14(4), 2294–2308.��
* Onireti, O., et al. (2015). A cell outage management framework for dense heterogeneous networks. IEEE Transactions on Vehicular Technology, 65(4), 2097–2113.�
* Behjati, M., & Cosmas, J. (2013). Self-organizing network interference coordination for future LTE-advanced networks. In 2013 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), 2013: IEEE, pp. 1–5.�
* Aguilar-Garcia, A., et al. (2015). Location-aware self-organizing methods in femtocell networks. Computer Networks, 93, 125–140.��
* Kudo, T., & Ohtsuki, T. (2013). Cell range expansion using distributed Q-learning in heterogeneous networks. Eurasip journal on wireless communications and networking, 2013(1), 1–10.��
* Gomez, C. A., Shami, A., & Wang, X. (2018). Machine learning aided scheme for load balancing in dense IoT networks. Sensors, 18(11), 3779.��
* Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.��
* Jiang, H., Pan, Z., Liu, N., You, X., & Deng, T. (2016). Gibbs-sampling-based CRE bias optimization algorithm for ultradense networks. IEEE Transactions on Vehicular Technology, 66(2), 1334–1350.��
* Park, J.-B., & Kim, K. S. (2017). Load-balancing scheme with small-cell cooperation for clustered heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 67(1), 633–649.��
* Afshang, M., & Dhillon, H. S. (2018). Poisson cluster process based analysis of HetNets with correlated user and base station locations. IEEE Transactions on Wireless Communications, 17(4), 2417–2431.��
* Musleh, S., Ismail, M., & Nordin, R. (2017). Load balancing models based on reinforcement learning for self-optimized macro-femto LTE-advanced heterogeneous network. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1), 47–54.��
* Jaber, M., Imran, M., Tafazolli, R., & Tukmanov, A. (2015). An adaptive backhaul-aware cell range extension approach. In 2015 IEEE international conference on communication workshop (ICCW), 2015: IEEE, pp. 74–79.�
* Hamidouche, K., Saad, W., Debbah, M., Song, J. B., & Hong, C. S. (2017). The 5G cellular backhaul management dilemma: To cache or to serve. IEEE Transactions on Wireless Communications, 16(8), 4866–4879.��
* Samarakoon, S., Bennis, M., Saad, W., & Latva-aho, M. (2013). Backhaul-aware interference management in the uplink of wireless small cell networks. IEEE Transactions on Wireless Communications, 12(11), 5813–5825.
* Team Basics: Edge, Security, Cloud, Data. Holistic Development with Community.

1�Aprodu, M., Naie, D.: Enriques diagrams and the log-canonical threshold for curves. Preprint, arXiv:math/07070783.�2�Casas-Alvero E.: Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287, 429–454 (1990)�� 3�Ein, L.: Multiplier ideals, vanishing theorems and applications. Algebraic geometry—Santa Cruz, pp. 203–219 (1995)�4�Ein L., Lazarsfeld R., Smith K.E., Varolin D.: Jumping coefficients of multiplier ideals. Duke Math. J. 123(3), 469–506 (2004)�� 5�Enriques F., Chisini O.: Lezioni Sulla Teoria Geometrica Delle Equazioni e Delle Funzioni Algebriche. N. Zanichelli, Bologna (1915)�� 6�Evain L.: La fonction de Hilbert de la réunion de 4h gros points génériques de ℙ� de même multiplicité. J. Algebraic Geom. 8, 787–796 (1999)�� 7�Favre Ch., Jonsson M.: Valuations and multiplier ideals. J. Am. Math. Soc. 18(3), 655–684 (2005)�� 8�Howald J.A.: Multiplier ideals of monomial ideals. Trans. Am. Math. Soc. 353, 2665–2671 (2001)�� 9�Järviletho, T.: Jumping numbers of a simple complete ideal in a two-dimensional regular local ring. Ph.D. Thesis, University of Helsinky (2007)�10�Lazarsfeld, R.: Positivity in algebraic geometry. A Series of Modern Surveys in Mathematics. Springer, Berlin (2004)�11�Naie D.: Irregularity of cyclic multiple planes after Zariski. L’enseignement mathématique 53, 265–305 (2008)�� 12�Semple J.G., Kneebone G.T.: Algebraic Curves. Oxford University Press, London-New York (1959)�� 13�Smith, K.E., Thompson, H.M.: Irrelevant exceptional divisors for curves on a smooth surface. Preprint, arXiv:math/0611765�14�Tucker, K.: Jumping Numbers on algebraic surfaces with rational singularities. Preprint, arXiv:math/081.0734�15�Wall, C.T.C.: Singular points of plane curves. London Mathematical Society Student Texts, vol. 63. Cambridge University Press, Cambridge (2004)

25/12/2021

Smart Cities / Regions / For Development / Community Building / Learning / Network Mobilization / Innovation / Market Integration

1. Austin, Texas
2. Los Angeles, California
3. San Diego, California
4. Denver, Colorado
5. Houston, Texas
6. Chicago, Illinois
7. New York, New York
8. London, United Kingdom
9. Bangkok, Thailand
10. Seoul Korea
11. Italy / Brasil / Hong Kong
12. Berlin, Germany
13. Stockholm, Sweden
14. Detroit, Michigan
15. Miami, Florida
16. Tampa, Florida
17. Charlotte, NC
18. Richmond, Virginia
19. Boston, Massachusetts
20. Phoenix, AZ
21. Seattle, WA
22. Portland, OR
23. Vancouver, BC
24. Toronto, Ontario
25. Madrid, Spain
26. Mumbai, India
27. Kansas City, MO
28. St. Petersberg, FL
29. Nashville, Tennesse
30. Netherlands, Israel, Australia
31. Atlanta, Georgia,
32. Tokyo, Japan
33. Paris, France
34. Cape Town, South Africa
35. Dubai, UAE
36. Minneapolis, MN

Integrating Market and State with People and Community, with Wisdom and Motivation.

Chu, J.-H., Feng, K.-T., & Chang, T.-S. (2014). Energy-efficient cell selection and resource allocation in LTE-A heterogeneous networks. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), 2014: IEEE, pp. 976–980.��
�Guvenc, I. (2011). Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination. IEEE Communications Letters, 15(10), 1084–1087.��
* Okino, K., Nakayama, T., Yamazaki, C., Sato, H., & Kusano, Y. (2011). Pico cell range expansion with interference mitigation toward LTE-Advanced heterogeneous networks. In 2011 IEEE international conference on communications workshops (ICC), 2011: IEEE, pp. 1–5.��
* Tefft, J. R., & Kirsch, N. J. (2013). A proximity-based Q-learning reward function for femtocell networks. In 2013 IEEE 78th vehicular technology conference (VTC Fall), 2013: IEEE, pp. 1–5.� �
* Saad, H., Mohamed, A., & ElBatt, T. (2012). Distributed cooperative Q-learning for power allocation in cognitive femtocell networks. In 2012 IEEE vehicular technology conference (VTC Fall), 2012: IEEE, pp. 1–5.�
* Wen, B., Gao, Z., Huang, L., Tang, Y., & Cai, H. (2014). A Q-learning-based downlink resource scheduling method for capacity optimization in LTE femtocells. In 2014 9th international conference on computer science & education, 2014: IEEE, pp. 625–628.��
* Galindo-Serrano, A., & Giupponi, L. (2010). Distributed Q-learning for interference control in OFDMA-based femtocell networks. In 2010 IEEE 71st vehicular technology conference, 2010: IEEE, pp. 1–5.��
* Guo, D., Tang, L., Zhang, X., & Liang, Y.-C. (2020). Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(11), 13124–13138.��
* Alnwaimi, G., Vahid, S., & Moessner, K. (2014). Dynamic heterogeneous learning games for opportunistic access in LTE-based macro/femtocell deployments. IEEE Transactions on Wireless Communications, 14(4), 2294–2308.��
* Onireti, O., et al. (2015). A cell outage management framework for dense heterogeneous networks. IEEE Transactions on Vehicular Technology, 65(4), 2097–2113.�
* Behjati, M., & Cosmas, J. (2013). Self-organizing network interference coordination for future LTE-advanced networks. In 2013 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), 2013: IEEE, pp. 1–5.�
* Aguilar-Garcia, A., et al. (2015). Location-aware self-organizing methods in femtocell networks. Computer Networks, 93, 125–140.��
* Kudo, T., & Ohtsuki, T. (2013). Cell range expansion using distributed Q-learning in heterogeneous networks. Eurasip journal on wireless communications and networking, 2013(1), 1–10.��
* Gomez, C. A., Shami, A., & Wang, X. (2018). Machine learning aided scheme for load balancing in dense IoT networks. Sensors, 18(11), 3779.��
* Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.��
* Jiang, H., Pan, Z., Liu, N., You, X., & Deng, T. (2016). Gibbs-sampling-based CRE bias optimization algorithm for ultradense networks. IEEE Transactions on Vehicular Technology, 66(2), 1334–1350.��
* Park, J.-B., & Kim, K. S. (2017). Load-balancing scheme with small-cell cooperation for clustered heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 67(1), 633–649.��
* Afshang, M., & Dhillon, H. S. (2018). Poisson cluster process based analysis of HetNets with correlated user and base station locations. IEEE Transactions on Wireless Communications, 17(4), 2417–2431.��
* Musleh, S., Ismail, M., & Nordin, R. (2017). Load balancing models based on reinforcement learning for self-optimized macro-femto LTE-advanced heterogeneous network. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1), 47–54.��
* Jaber, M., Imran, M., Tafazolli, R., & Tukmanov, A. (2015). An adaptive backhaul-aware cell range extension approach. In 2015 IEEE international conference on communication workshop (ICCW), 2015: IEEE, pp. 74–79.�
* Hamidouche, K., Saad, W., Debbah, M., Song, J. B., & Hong, C. S. (2017). The 5G cellular backhaul management dilemma: To cache or to serve. IEEE Transactions on Wireless Communications, 16(8), 4866–4879.��
* Samarakoon, S., Bennis, M., Saad, W., & Latva-aho, M. (2013). Backhaul-aware interference management in the uplink of wireless small cell networks. IEEE Transactions on Wireless Communications, 12(11), 5813–5825.
* Team Basics: Edge, Security, Cloud, Data. Holistic Development with Community.

1�Aprodu, M., Naie, D.: Enriques diagrams and the log-canonical threshold for curves. Preprint, arXiv:math/07070783.�2�Casas-Alvero E.: Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287, 429–454 (1990)�� 3�Ein, L.: Multiplier ideals, vanishing theorems and applications. Algebraic geometry—Santa Cruz, pp. 203–219 (1995)�4�Ein L., Lazarsfeld R., Smith K.E., Varolin D.: Jumping coefficients of multiplier ideals. Duke Math. J. 123(3), 469–506 (2004)�� 5�Enriques F., Chisini O.: Lezioni Sulla Teoria Geometrica Delle Equazioni e Delle Funzioni Algebriche. N. Zanichelli, Bologna (1915)�� 6�Evain L.: La fonction de Hilbert de la réunion de 4h gros points génériques de ℙ� de même multiplicité. J. Algebraic Geom. 8, 787–796 (1999)�� 7�Favre Ch., Jonsson M.: Valuations and multiplier ideals. J. Am. Math. Soc. 18(3), 655–684 (2005)�� 8�Howald J.A.: Multiplier ideals of monomial ideals. Trans. Am. Math. Soc. 353, 2665–2671 (2001)�� 9�Järviletho, T.: Jumping numbers of a simple complete ideal in a two-dimensional regular local ring. Ph.D. Thesis, University of Helsinky (2007)�10�Lazarsfeld, R.: Positivity in algebraic geometry. A Series of Modern Surveys in Mathematics. Springer, Berlin (2004)�11�Naie D.: Irregularity of cyclic multiple planes after Zariski. L’enseignement mathématique 53, 265–305 (2008)�� 12�Semple J.G., Kneebone G.T.: Algebraic Curves. Oxford University Press, London-New York (1959)�� 13�Smith, K.E., Thompson, H.M.: Irrelevant exceptional divisors for curves on a smooth surface. Preprint, arXiv:math/0611765�14�Tucker, K.: Jumping Numbers on algebraic surfaces with rational singularities. Preprint, arXiv:math/081.0734�15�Wall, C.T.C.: Singular points of plane curves. London Mathematical Society Student Texts, vol. 63. Cambridge University Press, Cambridge (2004)

Videos (show all)

Elon Musk: Internal and external alignment in the servitization journey - Overcoming the challenges.
Holistic Light.  Big Data, Big Wisdom.  #Insight #People #Community #MachineLearning
Team Basics: Edge, Security, Cloud, Data. Holistic Development with Community.
Clay Magouyrk and Safra Catz: Building spiritual and economic linkages between  Stockholm and Milan. #Community
Ray Dalio: Extending Smart City as a Service, Smart Community as a Service, for Learning and Evolution in Kentucky.
United States, Canada, Mexico: Harmonious Intelligent Systems, Motivating Learning Network.
Meta Insight: Scaling Cloud Infrastructure, Improving Market, Community, Network Dynamics.
Making a Difference: Complex Ecology, Wisdom, Smart Cities as a Service. #Insight

Website