Melajah Matematika
Nearby schools & colleges
8022
Kedoyo
denpasar
80239
Belajar konsep matematika dasar dan latihan soal ulangan harian hingga masuk perguruan tinggi
https://youtu.be/tSNyBRldQ-I
https://youtu.be/tSNyBRldQ-I
https://youtu.be/tSNyBRldQ-I
Pada sebuah ujian yang dilaksanakan secara lisan oleh seorang guru digunakan aturan sebagai berikut.
Sebanyak 30 pertanyaan berbeda dimasukkan secara berpasangan pada 15 kartu.
Seorang siswa mengambil satu kartu secara acak. Jika dia menjawab dengan benar kedua pertanyaan pada kartu yang ditarik, dia dinyatakan lulus.
Jika dia menjawab dengan benar hanya satu pertanyaan pada kartu yang ditarik, dia mengambil kartu lain dan guru menentukan yang mana dari dua pertanyaan pada kartu kedua yang harus dijawab. Jika siswa menjawab dengan benar pertanyaan yang ditentukan, siswa tersebut dinyatakan lulus. Pada keadaan lainnya siswa dinyatakan gagal.
Jika seorang siswa mengetahui jawaban dari 25 pertanyaan dan tidak tahu jawaban yang benar untuk 5 pertanyaan lainnya, peluang siswa tersebut lulus ujian adalah ....
A. 195/203
B. 185/203
C. 175/203
D. 165/203
https://youtu.be/pKTNd5105c0
https://youtu.be/pKTNd5105c0
https://youtu.be/pKTNd5105c0
Latihan Soal OSN Matematika
Latihan Soal KSN Matematika SMP
Latihan Persiapan olimpiade matematika
Soal lengkap : https://melajah-matematika.blogspot.com/2024/04/osk-smp-2022.html
Soal :
ABCD adalah suatu persegi panjang. Dari titik C ditarik garis lurus yang memotong sisi AB di titik X. Garis CX memotong perpanjangan sisi AD di titik Y. Jika panjang BX adalah 𝑏 cm, panjang DY adalah 𝑑 cm, dan luas persegi panjang ABCD adalah 𝐿 cm², maka pernyataan yang benar adalah....
Jika pada umumnya grafik akan selalu terdifinisi dimana-mana atau grafiknya selalu merupakan garis yang tidak pernah putus. Adakalanya suatu grafik fungsi rasional akan mengalami kondisi dimana nilainya tidak dapat ditemukan atau mendekati suatu nilai tertentu. Ketika grafik mendekati sebuah garis pada ujung-ujung grafiknya, maka garis itulah yang disebut dengan asimtot, dimana secara umum jenis asimtot ada 3 yaitu
asimtot tegak
asimtot datar
asimtot miring
untuk mengetahui ketiga jenis asimtot tersebut, silahkan simak penjelasanya.
https://youtu.be/QzwfKsWFuSc
https://youtu.be/QzwfKsWFuSc
https://youtu.be/QzwfKsWFuSc
Asimtot Fungsi Rasional | Asimtot Tegak - Asimtot Datar - Asimtot Miring Jika pada umumnya grafik akan selalu terdifinisi dimana-mana atau grafiknya selalu merupakan garis yang tidak pernah putus. Adakalanya suatu grafik fungsi ra...
https://youtu.be/Vs_1lIBED6c
https://youtu.be/Vs_1lIBED6c
https://youtu.be/Vs_1lIBED6c
Pembuktian Rumus Bunga Majemuk | Ta=To.(1+i)^n Bunga Majemuk adalah bunga yang diberikan oleh Bank dengan aturan bahwa bunga yang diperoleh nasabah di bulan ini akan memperoleh bunga kembali di bulan sela...
Simak dan Pahami Penjelasanya dengan klik link berikut
https://youtu.be/TxB8mI3ysvs
https://youtu.be/TxB8mI3ysvs
https://youtu.be/TxB8mI3ysvs
https://youtu.be/7poShxzHFrw
https://youtu.be/7poShxzHFrw
https://youtu.be/7poShxzHFrw
SOAL OLIMPIADE MATEMATIKA SMP | BILANGAN BULAT Jumlah Semua bilangan bulat positif n sehingga (n-2)^2 / (n + 3) merupakan bilangan bulat.mari berlatih soal-soal olimpiade bersama melajah matematika dengan...
https://youtu.be/n50ADaDU8E4
https://youtu.be/n50ADaDU8E4
https://youtu.be/n50ADaDU8E4
Latihan soal Olimpiade SMP
Diketahui segitiga ABC dengan AB = 5 ; AC = 11 ; BC = 12. Titik D ditengah sisi AC dan F titik tengah sisi BD dan DE sejajar BC. Jika titik G adalah titik potong AF dan DE maka ukuran panjang sisi DG adalah … .
Soal olimpiade Matematika SMP | Kesebangunan Segitiga | Geometri Latihan Soal OSN MatematikaLatihan Soal KSN Matematika SMPLatihan Persiapan olimpiade matematikaSoal :Diketahui segitiga ABC dengan AB = 5 ; AC = 11 ; BC = 1...
https://youtu.be/DOEgkoMinfc
https://youtu.be/DOEgkoMinfc
https://youtu.be/DOEgkoMinfc
Latihan Soal TPS dan TPA UTBK-SBMPTN | Matematika Dasar | Eksponen | Bilangan berpangkat
https://youtu.be/AMB9MEtkeM0
https://youtu.be/AMB9MEtkeM0
https://youtu.be/AMB9MEtkeM0
Pembuktian Jarak titik dengan garis.
Misalkan ada sebuah titik P dan garis k, maka
Jarak titik P ke garis k adalah jarak antara titik P dengan titik potong antara garis k dengan garis yang tegak lurus k dan melalui titik P. Sehingga untuk menghitung jarak titik P ke garis dapat dilakukan dengan menggunkan konsep jarak antara 2 titik. Namun tidak menutup kemungkinan menggunakan konsep lain unutk membuktikan jarak titik ke garis. Unutk lebih jelasnya yuk simak penjelasa Pembuktian Jarak titik Ke garis.
Pembuktian Jarak Titik Ke Garis Dengan Konsep Jarak 2 Titik Misalkan ada sebuah titik P dan garis k, makaJarak titik P ke garis k adalah jarak antara titik P dengan titik potong antara garis k dengan garis yang tegak ...
Simak penjelasanya di link berikut
https://youtu.be/Dek96EUMI8I
https://youtu.be/Dek96EUMI8I
https://youtu.be/Dek96EUMI8I
Dalam menentukan nilai limit fungsi aljabar dapat dilakukan dengan 4 cara yang dapat di susun dari cara yang paling sederhana yaitu ;
a. Cara Substitusi dapat dilakukan dengan cara mengganti nilai variabel yang di dekati oleh limit, namun cara ini akan gagal ketika hasil dari fungsi tersebut menghasilkan bentuk tak tentu (bisal 0/0)
b. Jika Faktor dapat digunakan ketika menemukan bentuk tak tentu namun fungsi yang dilimitkan dapat difaktorkan dan dapat disederhanakan sehingga nilainya dapat disederhanakan.
c. Cara kali sekawan dapat dilakukan ketika cara subtitusi dan cara faktor gagal. Cara ini adalah mengalikan fungsi yang dilimitkan dengan 1 (kawan dari pembilang /penyebutnya) sehingga akan menemukan bentuk yang dapat disederhanakan dan tidak terbentuk lagi bentuk tak tentu.
d. Dalil L'Hopital cara ini mengharuskan kita memahami konsep turunan karena dalil hopital menggunakan konsep turunan dalam menyelesaikan fungsi.
Definisi Limit.
https://youtu.be/8vC1K0gSyds
https://youtu.be/8vC1K0gSyds
https://youtu.be/8vC1K0gSyds
Limit merupakan suatu materi matematika yang membahas suatu nilai pendekatan fungsi. Secara sederhana nilai limit akan ada jika nilai limit kiri sama dengan limit kanan, Nilai limit kiri dan kanan dapat di uji dengan mengambil beberapa titik di sebelah kiri dan kanan dari nilai limit yang didekati yang kemudian di uji ke fungsi yang dicari nilai limitnya. Apabila nilai titik yang disubstitusikan memiliki nilai yang mendekati suatu nilai yang sama maka dapat dikatakan nilai limit ADA sedangkan apabila nilainya berbeda maka nilai limit dikatakan TIDAK ADA.
https://youtu.be/bu8CywnJN4w
https://youtu.be/bu8CywnJN4w
https://youtu.be/bu8CywnJN4w
Apabila kesebangunan pada segitiga sudah dipahami dengan baik, maka konsep kesebangunan pada segitiga akan dapat dikembangkan ke bentuk kesebangunan bangun datar segiempat salah satunya adalah trapesium. Pada trapesium akan berlaku beberapa sifat (rumus). Berikut adalah salah satu theoremanya, silahkan disimak dengan biak videonya ya.
Simak penjelasanya pada link
https://youtu.be/6-d_W91G9J
https://youtu.be/6-d_W91G9Jc
https://youtu.be/6-d_W91G9Jc
Pembuktian rumus garis singgung lingkaran dengan pusat (a,b) dan titik pada lingkaran
untk mencari persamaan garis singgung lingkaran dengan pusat (a, b) dan titik singgungnya tepat pada lingkaran dapat menggunakan bentuk rumus (x1-a)(x-a)+(y1-b)(y-b)=r^2 dengan r adalah jari-jari, (a, b) adalah pusat lingkaran dan (x1, y1) adalah titik singgung lingkaran yang terletak pada lingkaran. Nah mengapa bentuk rumusnya seperti diatas, silahkan simak videonya untuk mengetahui pembuktianya !
Pembuktian Rumus Garis Singgung Lingkaran dengan Pusat (0,0) dan titik Pada Lingkaran
X1x + y1y = r^2
merupakan rumus untuk mencari garis singgung lingkaran dengan pusat 0,0 dan titik singgung pada lingkaran. Untuk membuktikan rumus dapat dimulai dari definisi bahwa, garis yang ditarik dari titik singgung lingkaran ke pusat lingkaran akan selalu tegak lurus dengan garis singgung lingkaran. Sehingga untuk mencari gradien dari garis singgung yang akan dibuktikan dapat dicari dengan kebalikan dari gradien garis yang melali pusat dan titik tinggung lingkaran karena kedua garis tegak lurus. Sehingga jika diketahui sebuah gradien dan sebuah titik akan dapat dibuat sebuat garis, dalam hal ini adalah garis singgung lingkaran dengan pusat 0,0 dan titik singgung pada lingkaran
Klik link untuk penjelasanya.
https://youtu.be/kDdkdazLVf4
https://youtu.be/kDdkdazLVf4
https://youtu.be/kDdkdazLVf4
Pembuktian Rumus Perbandingan pada Trapesium | Rumus Kesebangunan trapesium | Kesebangunan
Apabila kesebangunan pada segitiga sudah dipahami dengan baik, maka konsep kesebangunan pada segitiga akan dapat dikembangkan ke bentuk kesebangunan bangun datar segiempat salah satunya adalah trapesium. Pada trapesium akan berlaku beberapa sifat (rumus). Berikut adalah salah satu theoremanya, silahkan disimak dengan biak videonya ya.
Klik link untuk lihat selengkapnya
https://youtu.be/RK5caAoSZJk
https://youtu.be/RK5caAoSZJk
https://youtu.be/RK5caAoSZJk
Click here to claim your Sponsored Listing.
Category
Contact the school
Telephone
Address
Denpasar
Jalan Teuku Umar Barat/Marlboro 27
Denpasar, 80115
Ada beberapa alternatif untuk kalian setelah menamatkan SMU/SMK antara lain adalah kuliah ke perguru
Jalan Subur Gang Mirah Pemecutan 2/no. 7 Monang-maning
Denpasar, 80119
Pemuda Al-Irsyad Bali
Jalan Raya Sesetan Gang VI No. 10 Pesanggaran Denpasar Selatan
Denpasar
SMP PGRI 4 Denpasar membuka Pendaftaran Peserta Didik Baru Tahun Pelajaran 2022/2023 IG : @spegripasmp Youtube : SMP PGRI 4 DENPASAR
Jalan Palapa 2 Perumahan Tarumas Kampial Nusa Dua
Denpasar, 80361
Niel’s International Hospitality College is an Agent for J1 Program placement to USA based in Bali.
Jalan Bumi Ayu Gang Pungut Sari, No. 6, Sanur, Indonesia
Denpasar, 80228
An impact-driven education platform designed for those eager to learn how to work online and build successful remote careers. We offer remote skills courses on topics like Virtual...
Jalan Raya Pemogan No. 240, Pemogan, Kec. Denpasar
Denpasar
Jalan Mertasari No. 190 Sidakarya, Denpasar Selatan
Denpasar
💯 Kursus Matematika dan Bahasa Inggris 👩🏫 Pra Sekolah-SMU ⏰ Buka Kelas Senin- Sabtu
Jalan PANDU PADJER
Denpasar
bimbingan belajar spesialisasi tes masuk CASN , Sekolah Kedinasan, TNI dan POLRI terbaik
Denpasar
Jendela Ilmu Kesehatan (JIKBALI) menyelenggarakan seminar & pelatihan ⭐ Kebidanan ⭐ Keperawatan